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Why is Ethernet promising? 
• Dominant datacenter network fabric

• High bandwidth (Terabit Ethernet link)

• Low management cost, distance scaling…

Why memory disaggregation? 
• The need for memory is surging

• Constraints of individual servers

• Fine-grained pooling, elastic scaling
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However, the latency in Ethernet is prohibitive, prompting 
proposals of separate fabric to carry memory traffic 

Custom processor interconnect, PCIe, Infiniband, etc.
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But, separate fabrics for different traffic makes the network costly and harder to manage
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But, separate fabrics for different traffic makes the network costly and harder to manage

A low latency Ethernet fabric would allow us to have a single unified 
network fabric to carry all kinds of traffic (memory, storage, IP, …) 

… easier to manage, lower cost, statistical bandwidth multiplexing 



Achieving near intra-server memory 
access latency over rack-scale Ethernet  

(while maintaining high bandwidth utilization)

Research goal 
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Memory Disaggregation over Ethernet 
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Ethernet Fabric 
** focus of this work **
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Latency Overheads of Existing Memory Disaggregation over Ethernet 
An example of remote read request over RDMA
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𝛿: queueing delay
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ETH MAC
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Transport protocol         
(e.g., TCP/IP or RDMA)
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1. Ethernet MAC enforces minimum 64B frame 
… but memory messages can be much smaller 
(e.g., read requests are typically 8-16B)      


2. Ethernet MAC enforces minimum of 12 bytes     
Inter-frame gap (IFG)                                            
… high overhead for small memory messages


3. Ethernet MAC does not allow intra-frame 
preemption                                                         
… a large non-memory frame may block the 
transmission of a small memory message
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Implement the entire 
protocol for remote memory access 

within Ethernet’s Physical layer 

Design Choice # 1:

13



Compute Node

Transport protocol         
(e.g., TCP/IP or RDMA)

Application

Create/read packet

Reliability

Congestion Control

ETH PHY

Ethernet PHY already reformats a MAC layer frame 
into a series of 66-bit PHY blocks 
… thus, unlike the MAC layer that works at a frame 
granularity, PHY works at fine-grained block granularity

0000ETH MAC

Ra#onale for Remote Memory Protocol in PHY

Frame

• 66 bit PHY block vs. 64 byte minimum MAC frame size

• PHY also has access to IFG blocks 
• Message interleaving can be done at block granularity in 

PHY rather than at frame granularity in MAC

IFG
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Benefits of Remote Memory Protocol in the PHY

1. Ethernet PHY operates at a fine data granularity 
of 66-bit PHY blocks.                                             
Avoids bandwidth wastage for small memory 
messages.     


2. Ethernet PHY has access to IFG bits.                                           
Can repurpose IFG to carry memory messages.


3. Ethernet PHY enables intra-frame preemption
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Benefits of Remote Memory Protocol in the PHY
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Remote Memory Protocol in the PHY : What about latency?
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Implement a 
 centralized memory traffic scheduler 

in the PHY of the switch

Design Choice # 2:
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Central Scheduler in the Switch PHY

Switch

Compute Node

ETH PHY
Protocol for 

Remote Memory 
Access

Create/read  
PHY block

Reliability

Congestion 
Control

ETH PHY

Memory Node

ETH PHY

Memory Controller

Protocol for 
Remote Memory 

Access
Create/read  
PHY block

Reliability

Congestion 
Control

NTF
NTFPa

rs
er DST


Port
Match-
Action

Queue

Application 1

PHY 

block

PHY 

block

Memory 

Message

230ns 230ns
400ns + δ

Central Scheduler

Memory traffic demand

Virtual Circuits


87ns

31ns 31ns

Ethernet Disaggregated Memory (EDM)

22

Total  300ns 
(7x lower than RoCE )

≈

10ns 10ns
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• Step 1: Nodes send their memory message demands {src->dst} to the switch scheduler

• Step 2: Switch scheduler creates virtual circuits by forming a Matching based on demand  
• Naive maximal matching ~O(N); EDM uses Parallel Iterative Matching (PIM) ~O(log(N)) 

• Step 3: Nodes exchange memory messages over established circuits

[1]

[1] Anderson et al. “High Speed switch scheduling for Local Area Networks”. TOCS 1993.
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Practical Central Scheduler
• Challenge 1: Low latency for memory messages under bandwidth contention 

• Challenge 2: Accurate, low overhead memory traffic demand estimation 

• Challenge 3: Line rate, low latency scheduling hardware pipeline



Challenge # 1: Achieve low latency under bandwidth contention 
Solution: Augment PIM with priority scheduling

• First Come First Serve (FCFS) for light-tailed traffic distribution

• Shortest Remaining Processing First (SRPT) for heavy-tailed traffic distribution
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Challenge # 1: Achieve low latency under bandwidth contention 
Solution: Augment PIM with priority scheduling

• First Come First Serve (FCFS) for light-tailed traffic distribution

• Shortest Remaining Processing First (SRPT) for heavy-tailed traffic distribution
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• For SRPT, each demand message from the nodes also contains the size of message 
• Demand messages per node are processed in the increasing order of remaining bytes 
• Matching contention -> prioritize demand messages with smaller remaining bytes



Challenge # 2: Acquire accurate, low overhead memory traffic demand matrix 
Solution: Leverage the nature of memory access interface that specifies amount 
of data to be read or written


•  For reads, read request implicity contains demand for read reply

•  Zero bandwidth and latency overhead


•  For writes, send an explicit demand message to switch

•  Small bandwidth overhead (notifications are small)

•  Latency (~RTT/2) is small within a rack
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Challenge # 3: Design line-rate, low latency scheduling hardware pipeline 
Naive implementation of priority-based PIM would take O(log(N)) cycles per PIM 
iteration (N: number of demand messages)

Solution: Leverage hardware parallelism to intelligently trade-off hardware 
resources for time

• Use combination of constant-time ordered list data structure with a fast priority 

encoder to implement priority-based PIM

EDM can implement each iteration of PIM in exactly 3 clock cycles
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Implementation 
Hardware Testbed 
•Three Xilinx Alveo U200 FPGAs

•Open-source 25GbE (Corundum)

•Synopsys ASIC RTL compiler

Network Simulator 
•A single rack with 144 nodes 

•Fed with real-world traces

•Compare against 6 classes of 
scheduling / congestion control
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Evaluation 
•  End-to-end unloaded latency

270ns CXL
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Lower is better



Evaluation 
•  Disaggregated workloads in a loaded network
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Lower is better

http://sortbenchmark.org


Summary
• EDM is a low latency Ethernet fabric for memory disaggregation.


• EDM uses two ideas for low latency w/ high bandwidth utilization:

• EDM implements the protocol for remote memory access entirely 

in the Ethernet PHY.

• EDM implements a fast, centralized memory traffic scheduler in 

the switch’s PHY. 


• EDM incurs a latency of ~300ns (7x lower than RoCE) in an unloaded 
network, and < 1.3x its unloaded latency under heavy network loads.
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Thank you !

 Code: h4ps://github.com/wegul/EDM
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https://github.com/wegul/EDM

